SOHLH2 is essential for synaptonemal complex formation during spermatogenesis in early postnatal mouse testes

نویسندگان

  • Miree Park
  • Youngeun Lee
  • Hoon Jang
  • Ok-Hee Lee
  • Sung-Won Park
  • Jae-Hwan Kim
  • Kwonho Hong
  • Hyuk Song
  • Se-Pill Park
  • Yun-Yong Park
  • Jung Jae Ko
  • Youngsok Choi
چکیده

Spermatogenesis- and oogenesis-specific helix-loop-helix transcription factor 2 (SOHLH2) is exclusively expressed in germ cells of the gonads. Previous studies show that SOHLH2 is critical for spermatogenesis in mouse. However, the regulatory mechanism of SOHLH2 during early spermatogenesis is poorly understood. In the present study, we analyzed the gene expression profile of the Sohlh2-deficient testis and examined the role of SOHLH2 during spermatogenesis. We found 513 genes increased in abundance, while 492 genes decreased in abundance in 14-day-old Sohlh2-deficient mouse testes compared to wildtype mice. Gene ontology analysis revealed that Sohlh2 disruption effects the relative abundance of various meiotic genes during early spermatogenesis, including Spo11, Dmc1, Msh4, Prdm9, Sycp1, Sycp2, Sycp3, Hormad1, and Hormad2. Western blot analysis and immunostaining showed that SYCP3, a component of synaptonemal complex, was significantly less abundant in Sohlh2-deficient spermatocytes. We observed a lack of synaptonemal complex formation during meiosis in Sohlh2-deficient spermatocytes. Furthermore, we found that SOHLH2 interacted with two E-boxes on the mouse Sycp1 promoter and Sycp1 promoter activity increased with ectopically expressed SOHLH2. Taken together, our data suggest that SOHLH2 is critical for the formation of synaptonemal complexes via its regulation of Sycp1 expression during mouse spermatogonial differentiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Auto-Regulation of the Sohlh1 Gene by the SOHLH2/SOHLH1/SP1 Complex: Implications for Early Spermatogenesis and Oogenesis

Tissue-specific basic helix-loop-helix (bHLH) transcription factor proteins often play essential roles in cellular differentiation. The bHLH proteins SOHLH2 and SOHLH1 are expressed specifically in spermatogonia and oocytes and are required for early spermatogonial and oocyte differentiation. We previously reported that knocking out Sohlh2 causes defects in spermatogenesis and oogenesis similar...

متن کامل

Identification and Characterization of Xlr5c as a Novel Nuclear Localization Protein in Mouse Germ Cells

BACKGROUND Spermatogenesis is the complex process by which diploid stem cells generate haploid germ cells in gamete production. Members of the Xlr (X-chromosome linked, lymphocyte regulated) superfamily play essential roles in spermatogenesis. The expression, localization and role in spermatogenesis of one such member, Xlr5c, has not been reported previously. METHODOLOGY/PRINCIPAL FINDINGS Xl...

متن کامل

Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia.

The spermatogenesis and oogenesis-specific transcription factor Sohlh2 is normally expressed only in premeiotic germ cells. In this study, Sohlh2 and several other germ cell transcripts were found to be induced in mouse embryonic stem cells when cultured on a feeder cell line that overexpresses bone morphogenetic protein 4. To study the function of Sohlh2 in germ cells, we generated mice harbor...

متن کامل

Transcription factors SOHLH1 and SOHLH2 coordinate oocyte differentiation without affecting meiosis I.

Following migration of primordial germ cells to the genital ridge, oogonia undergo several rounds of mitotic division and enter meiosis at approximately E13.5. Most oocytes arrest in the dictyate (diplotene) stage of meiosis circa E18.5. The genes necessary to drive oocyte differentiation in parallel with meiosis are unknown. Here, we have investigated whether expression of spermatogenesis and ...

متن کامل

P-251: Effects of Indomethacin on Postnatal Development of Mouse Testes

Objective: Indomethacin is a non-selective cyclooxygenase (COX) inhibitor that is commonly administered to extremely low gestational age neonates for symptomatic patent ductus arteriosus. It suppresses prostaglandins which modulate growth and secretion of various hormones. We examined the hypothesis that early postnatal administration of Indomethacin may influence growth and development of test...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016